Obscured AGN enhancement in galaxy pairs at cosmic noon: evidence from a probabilistic treatment of photometric redshifts

Author:

Dougherty Sean L1,Harrison C M1ORCID,Kocevski Dale D2,Rosario D J1

Affiliation:

1. School of Mathematics, Statistics and Physics, Newcastle University , Tyne NE1 7RU , UK

2. Department of Physics and Astronomy, Colby College , Waterville, ME 04961 , USA

Abstract

ABSTRACT Observations of the nearby universe reveal an increasing fraction of active galactic nuclei (AGNs) with decreasing projected separation for close galaxy pairs, relative to control galaxies. This implies galaxy interactions play a role in enhancing AGN activity. However, the picture at higher redshift is less established, partly due to limited spectroscopic redshifts. We combine spectroscopic surveys with photometric redshift probability distribution functions for galaxies in the CANDELS and COSMOS surveys, to produce the largest ever sample of galaxy pairs used in an AGN fraction calculation for cosmic noon (0.5 < z < 3). We present a new technique for assessing galaxy pair probability (based on line-of-sight velocities ±1000 km s−1) from photometric redshift posterior convolutions and use these to produce weighted AGN fractions. Over projected separations 5–100 kpc, we find no evidence for enhancement, relative to isolated control galaxies, of X-ray (LX > 1042 erg s−1) or infrared-selected AGN in major (mass ratios up to 4:1) or minor (4:1 to 10:1) galaxy pairs. However, defining the most obscured AGN as those detected in the infrared but not in X-rays, we observe a trend of increasing obscured AGN enhancement at decreasing separations. The peak enhancement, relative to isolated controls, is a factor of 2.08 ± 0.61 for separations <25 kpc. Our simulations with mock data, indicates this could be a lower limit of the true enhancement. If confirmed with improved infrared imaging (e.g. with JWST) and redshifts (e.g. with forthcoming multi-object spectrograph surveys), this would suggest that galaxy interactions play a role in enhancing the most obscured black hole growth at cosmic noon.

Funder

UK Research and Innovation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3