Apparent Effect of Dust Extinction on the Observed Outflow Velocity of Ionized Gas in Galaxy Mergers

Author:

Yutani Naomichi,Toba YoshikiORCID,Wada KeiichiORCID

Abstract

Abstract In this study, we examine photoionization outflows during the late stages of galaxy mergers, with a specific focus on the relation between the observed velocity of outflowing gas and the apparent effects of dust extinction. We used the N-body/smoothed particle hydrodynamics code ASURA for galaxy merger simulations. These simulations concentrated on identical galaxy mergers featuring supermassive black holes of 108 M and gas fractions of 30% and 10%. From the simulation data, we derived velocity and velocity dispersion diagrams for the active galactic nuclei (AGN)-driven ionized outflowing gas. Our findings show that high-velocity outflows with velocity dispersions of 500 km s−1 or greater can be observed in the late stages of galactic mergers. Particularly, in buried AGNs, both the luminosity-weighted outflow velocity and velocity dispersion increase owing to the apparent effects of dust extinction. Owing to these effects, velocity–velocity dispersion diagrams display a noticeable blue-shifted tilt in models with higher gas fractions. Crucially, this tilt is not influenced by the AGN luminosity but emerges from the observational impacts of dust extinction. Our results imply that the observed high-velocity [O iii] λ5007 outflow exceeding 1000 km s−1 in buried AGNs may be linked to the dust extinction that occurs during the late stages of gas-rich galaxy mergers.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3