Atmospheric characterization of hot Jupiters using hierarchical models of Spitzer observations

Author:

Keating Dylan1ORCID,Cowan Nicolas B12ORCID

Affiliation:

1. Department of Physics, McGill University, Montréal, QC H3A 2T8, Canada

2. Department of Earth and Planetary Sciences, McGill University, Montréal, QC H3A 2T8, Canada

Abstract

ABSTRACT The field of exoplanet atmospheric characterization is trending towards comparative studies involving many planetary systems, and using Bayesian hierarchical modelling is a natural next step. Here we demonstrate two use cases. We first use hierarchical modelling to quantify variability in repeated observations by reanalysing a suite of 10 Spitzer secondary eclipse observations of the hot Jupiter XO-3 b. We compare three models: one where we fit 10 separate eclipse depths, one where we use a single eclipse depth for all 10 observations, and a hierarchical model. By comparing the widely applicable information criterion of each model, we show that the hierarchical model is preferred over the others. The hierarchical model yields less scatter across the suite of eclipse depths – and higher precision on the individual eclipse depths – than does fitting the observations separately. We find that the hierarchical eclipse depth uncertainty is larger than the uncertainties on the individual eclipse depths, which suggests either slight astrophysical variability or that single eclipse observations underestimate the true eclipse depth uncertainty. Finally, we fit a suite of published dayside brightness measurements for 37 planets using a hierarchical model of brightness temperature versus irradiation temperature. The hierarchical model gives tighter constraints on the individual brightness temperatures than the non-hierarchical model. Although we tested hierarchical modelling on Spitzer eclipse data of hot Jupiters, it is applicable to observations of smaller planets like hot Neptunes and super-Earths, as well as for photometric and spectroscopic transit or phase-curve observations.

Funder

Jet Propulsion Laboratory

California Institute of Technology

NASA

McGill University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3