Hierarchical Bayesian Atmospheric Retrieval Modeling for Population Studies of Exoplanet Atmospheres: A Case Study on the Habitable Zone

Author:

Lustig-Yaeger JacobORCID,Sotzen Kristin S.ORCID,Stevenson Kevin B.ORCID,Luger RodrigoORCID,May Erin M.ORCID,Mayorga L. C.ORCID,Mandt KathleenORCID,Izenberg Noam R.ORCID

Abstract

Abstract With the growing number of spectroscopic observations and observational platforms capable of exoplanet atmospheric characterization, there is a growing need for analysis techniques that can distill information about a large population of exoplanets into a coherent picture of atmospheric trends expressed within the statistical sample. In this work, we develop a Hierarchical Bayesian Atmospheric Retrieval (HBAR) model to infer population-level trends in exoplanet atmospheric characteristics. We demonstrate HBAR on the case of inferring a trend in atmospheric CO2 with incident stellar flux, predicted by the presence of a functioning carbonate–silicate weathering negative feedback cycle, an assumption upon which all calculations of the habitable zone (HZ) rest. Using simulated transmission spectra and JWST-quality observations of rocky planets with H2O, CO2, and N2 bearing atmospheres, we find that the predicted trend in CO2 causes subtle differences in the spectra of order 10 ppm in the 1–5 μm range, underscoring the challenge inherent to testing this hypothesis. In the limit of highly precise data (100 stacked transits per planet), we show that our HBAR model is capable of inferring the population-level parameters that characterize the trend in CO2, and we demonstrate that the null hypothesis and other simpler trends can be rejected at high confidence. Although we find that this specific empirical test of the HZ may be prohibitively challenging in the JWST era, the HBAR framework developed in this work may find a more immediate usage for the analysis of gas giant spectra observed with JWST, Ariel, and other upcoming missions.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3