Prospects for future studies using deep imaging: analysis of individual Galactic cirrus filaments

Author:

Smirnov Anton A12,Savchenko Sergey S123,Poliakov Denis M12,Marchuk Alexander A12ORCID,Mosenkov Aleksandr V14ORCID,Il’in Vladimir B125ORCID,Gontcharov George A1ORCID,Román Javier678ORCID,Seguine Jonah4

Affiliation:

1. Central (Pulkovo) Astronomical Observatory, Russian Academy of Sciences , Pulkovskoye chaussee 65/1, 196140 St. Petersburg, Russia

2. Saint Petersburg State University , Universitetskij pr. 28, 198504 St. Petersburg, Russia

3. Saint Petersburg University of Aerospace Instrumentation , Bol. Morskaya ul. 67A, 190000 St. Petersburg, Russia

4. Special Astrophysical Observatory, Russian Academy of Sciences , 369167 Nizhnij Arkhyz, Russia

5. Department of Physics and Astronomy , N283 ESC, Brigham Young University, Provo, UT 84602, USA

6. Kapteyn Astronomical Institute, University of Groningen , PO Box 800, NL-9700 AV Groningen, the Netherlands

7. Instituto de Astrofísica de Canarias , c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain

8. Departamento de Astrofísica, Universidad de La Laguna , E-38206 La Laguna, Tenerife, Spain

Abstract

ABSTRACT The presence of Galactic cirrus is an obstacle for studying both faint objects in our Galaxy and low surface brightness extragalactic structures. With the aim of studying individual cirrus filaments in Sloan Digital Sky Survey (SDSS) Stripe 82 data, we develop techniques based on machine learning and neural networks that allow one to isolate filaments from foreground and background sources in the entirety of Stripe 82 with a precision similar to that of the human expert. Our photometric study of individual filaments indicates that only those brighter than 26 mag arcsec−2 in the SDSS r band are likely to be identified in SDSS Stripe 82 data by their distinctive colours in the optical bands. We also show a significant impact of data processing (e.g. flat-fielding, masking of bright stars, and sky subtraction) on colour estimation. Analysing the distribution of filaments’ colours with the help of mock simulations, we conclude that most filaments have colours in the following ranges: 0.55 ≤g − r ≤ 0.73 and 0.01 ≤ r − i ≤ 0.33. Our work provides a useful framework for an analysis of all types of low surface brightness features (cirri, tidal tails, stellar streams, etc.) in existing and future deep optical surveys. For practical purposes, we provide the catalogue of dust filaments.

Funder

Russian Science Foundation

Alfred P. Sloan Foundation

University of Utah

Carnegie Mellon University

University of Tokyo

Lawrence Berkeley National Laboratory

New Mexico State University

New York University

University of Notre Dame

Pennsylvania State University

Universidad Nacional Autónoma de México

University of Arizona

University of Colorado Boulder

University of Portsmouth

University of Virginia

University of Washington

Vanderbilt University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3