Strategies for optimal sky subtraction in the low surface brightness regime

Author:

Watkins Aaron E1ORCID,Kaviraj Sugata1ORCID,Collins Chris C2,Knapen Johan H34,Kelvin Lee S5ORCID,Duc Pierre-Alain6,Román Javier734ORCID,Mihos J Christopher8

Affiliation:

1. Centre for Astrophysics Research, University of Hertfordshire , College Lane, Hatfield AL10 9AB , UK

2. Astrophysics Research Institute, Liverpool John Moores University , IC2 Building, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF , UK

3. Instituto de Astrofísica de Canarias , Vía Láctea S/N, E-38205 La Laguna , Spain

4. Departamento de Astrofísica, Universidad de La Laguna , E-38206 La Laguna , Spain

5. Department of Astrophysical Sciences, Princeton University , 4 Ivy Lane, Princeton, NJ 08544 , USA

6. Université de Strasbourg, CNRS, Observatoire Astronomique de Strasbourg , UMR 7550, F-67000 Strasbourg , France

7. Kapteyn Astronomical Institute, University of Groningen , Landleven 12, NL-9747 AD Groningen , the Netherlands

8. Department of Astronomy, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, OH 44106 , USA

Abstract

ABSTRACT The low surface brightness (LSB) regime (μg  ≳  26 mag arcsec−2) comprises a vast, mostly unexplored discovery space, from dwarf galaxies to the diffuse interstellar medium. Accessing this regime requires precisely removing instrumental signatures and light contamination, including, most critically, night sky emission. This is not trivial, as faint astrophysical and instrumental contamination can bias sky models at the precision needed to characterize LSB structures. Using idealized synthetic images, we assess how this bias impacts two common LSB-oriented sky-estimation algorithms: (1) masking and parametric modelling, and (2) stacking and smoothing dithered exposures. Undetected flux limits both methods by imposing a pedestal offset to all derived sky models. Careful, deep masking of fixed sources can mitigate this, but source density always imposes a fundamental limit. Stellar scattered light can contribute ∼28–29 mag arcsec−2 of background flux even in low-density fields; its removal is critical prior to sky estimation. For complex skies, image combining is an effective non-parametric approach, although it strongly depends on observing strategy and adds noise to images on the smoothing kernel scale. Preemptive subtraction of fixed sources may be the only practical approach for robust sky estimation. We thus tested a third algorithm, subtracting a preliminary sky-subtracted coadd from exposures to isolate sky emission. Unfortunately, initial errors in sky estimation propagate through all subsequent sky models, making the method impractical. For large-scale surveys like Legacy Survey of Space and Time, where key science goals constrain observing strategy, masking and modelling remain the optimal sky estimation approach, assuming stellar scattered light is removed first.

Funder

STFC

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3