Gas permeability and mechanical properties of dust grain aggregates at hyper- and zero-gravity

Author:

Capelo Holly L1ORCID,Bodénan Jean-David2ORCID,Jutzi Martin1ORCID,Kühn Jonas1ORCID,Cerubini Romain1,Jost Bernhard1,Stöckli Linus1ORCID,Spadaccia Stefano1ORCID,Herny Clemence1ORCID,Gundlach Bastian3,Kargl Günter4ORCID,Surville Clément5,Mayer Lucio5ORCID,Schönböchler Maria2ORCID,Thomas Nicolas1ORCID,Pommerol Antoine1ORCID

Affiliation:

1. Space Research and Planetary Sciences, Physics institute, University of Bern , Sidlerstrasse 5, CH-3012 Bern , Switzerland

2. ETH Zurich, Institute of Geochemistry and Petrology , CH-8092 Zurich , Switzerland

3. Institut für Planetologie, Universität Münster , Wilhelm-Klemm Str. 10, 48149 Münster , Germany

4. Space Research Institute, Austrian Academy of Sciences , Schmiedlstrasse 6, A-8042 Graz , Austria

5. Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich , Switzerland

Abstract

ABSTRACT Particle–particle and particle–gas processes significantly impact planetary precursors such as dust aggregates and planetesimals. We investigate gas permeability ($\kappa$) in 12 granular samples, mimicking planetesimal dust regoliths. Using parabolic flights, this study assesses how gravitational compression – and lack thereof – influences gas permeation, impacting the equilibrium state of low-gravity objects. Transitioning between micro- and hyper-gravity induces granular sedimentation dynamics, revealing collective dust–grain aerodynamics. Our experiments measure $\kappa$ across Knudsen number (Kn) ranges, reflecting transitional flow. Using mass and momentum conservation, we derive $\kappa$ and calculate pressure gradients within the granular matrix. Key findings: (i) As confinement pressure increases with gravitational load and mass flow, $\kappa$ and average pore space decrease. This implies that a planetesimal’s unique dust-compaction history limits subsurface volatile outflows. (ii) The derived pressure gradient enables tensile strength determination for asteroid regolith simulants with cohesion. This offers a unique approach to studying dust-layer properties when suspended in confinement pressures comparable to the equilibrium state on planetesimals surfaces, which will be valuable for modelling their collisional evolution. (iii) We observe a dynamical flow symmetry breaking when granular material moves against the pressure gradient. This occurs even at low Reynolds numbers, suggesting that Stokes numbers for drifting dust aggregates near the Stokes–Epstein transition require a drag force modification based on permeability.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gas permeability and mechanical properties of dust grain aggregates at hyper- and zero-gravity;Monthly Notices of the Royal Astronomical Society;2024-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3