Measurement of parity-odd modes in the large-scale 4-point correlation function of Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey twelfth data release CMASS and LOWZ galaxies

Author:

Hou Jiamin12,Slepian Zachary13,Cahn Robert N3

Affiliation:

1. Department of Astronomy, University of Florida , Gainesville, FL 32611, USA

2. Max-Planck-Institut für Extraterrestische Physik , Postfach 1312, Giessenbachstrasse 1, D-85748 Garching, Germany

3. Lawrence Berkeley National Laboratory , Berkeley, CA 94720, USA

Abstract

ABSTRACT A tetrahedron is the simplest shape that cannot be rotated into its mirror image in three-dimension (3D). The 4-point correlation function (4PCF), which quantifies excess clustering of quartets of galaxies over random, is the lowest order statistic sensitive to parity violation. Each galaxy defines one vertex of the tetrahedron. Parity-odd modes of the 4PCF probe an imbalance between tetrahedra and their mirror images. We measure these modes from the largest currently available spectroscopic samples, the 280 067 luminous red galaxies (LRGs) of the Baryon Oscillation Spectroscopic Survey (BOSS) twelfth data release (DR12) LOWZ ($\bar{z} = 0.32$ ) and the 803 112 LRGs of BOSS DR12 CMASS ($\bar{z} = 0.57$ ). In LOWZ, we find 3.1σ evidence for a non-zero parity-odd 4PCF, and in CMASS we detect a parity-odd 4PCF at 7.1σ. Gravitational evolution alone does not produce this effect; parity-breaking in LSS, if cosmological in origin, must stem from the epoch of inflation. We have explored many sources of systematic error and found none that can produce a spurious parity-odd signal sufficient to explain our result. Underestimation of the noise could also lead to a spurious detection. Our reported significances presume that the mock catalogues used to calculate the covariance sufficiently capture the covariance of the true data. We have performed numerous tests to explore this issue. The odd-parity 4PCF opens a new avenue for probing new forces during the epoch of inflation with 3D large-scale structure; such exploration is timely given large upcoming spectroscopic samples such as Dark Energy Spectroscopic Instrument and Euclid.

Funder

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signatures of a parity-violating universe;Physical Review D;2024-01-29

2. Probing cosmology via the clustering of critical points;Monthly Notices of the Royal Astronomical Society;2024-01-15

3. Parity violation from emergent nonlocality during inflation;Physical Review D;2023-12-11

4. Scalar-induced gravitational waves from ghost inflation and parity violation;Physical Review D;2023-12-04

5. Leading loops in cosmological correlators;Journal of High Energy Physics;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3