Leading loops in cosmological correlators

Author:

Lee Mang Hei GordonORCID,McCulloch Ciaran,Pajer Enrico

Abstract

Abstract Cosmological correlators from inflation are often generated at tree level and hence loop contributions are bounded to be small corrections by perturbativity. Here we discuss a scenario where this is not the case. Recently, it has been shown that for any number of scalar fields of any mass, the parity-odd trispectrum of a massless scalar must vanish in the limit of exact scale invariance due to unitarity and the choice of initial state. By carefully handling UV-divergences, we show that the one-loop contribution is non-vanishing and hence leading. Surprisingly, the one-loop parity-odd trispectrum is simply a rational function of kinematics, which we compute explicitly in a series of models, including single-clock inflation. Although the loop contribution is the leading term in the parity-odd sector, its signal-to-noise ratio is typically bounded from above by that of a corresponding tree-level parity-even trispectrum, unless instrumental noise and systematics for the two observables differ. Furthermore, we identify a series of loop contributions to the wavefunction that cancel exactly when computing correlators, suggesting a more general phenomenon.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signatures of a parity-violating universe;Physical Review D;2024-01-29

2. Nonanalyticity and on-shell factorization of inflation correlators at all loop orders;Journal of High Energy Physics;2024-01-26

3. Analytic results for loop-level momentum space Witten diagrams;Journal of High Energy Physics;2023-12-18

4. The cosmological tree theorem;Journal of High Energy Physics;2023-12-12

5. Scalar-induced gravitational waves from ghost inflation and parity violation;Physical Review D;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3