The early growth of supermassive black holes in cosmological hydrodynamic simulations with constrained Gaussian realizations

Author:

Huang Kuan-Wei1ORCID,Ni Yueying1,Feng Yu2,Di Matteo Tiziana13

Affiliation:

1. McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2. Berkeley Center for Cosmological Physics, University of California at Berkeley, Berkeley, CA 94720, USA

3. School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia

Abstract

ABSTRACT The paper examines the early growth of supermassive black holes (SMBHs) in cosmological hydrodynamic simulations with different BH seeding scenarios. Employing the constrained Gaussian realization, we reconstruct the initial conditions in the large-volume bluetides simulation and run them to z = 6 to cross-validate that the method reproduces the first quasars and their environments. Our constrained simulations in a volume of $(15 \, h^{-1} {\rm Mpc})^3$ successfully recover the evolution of large-scale structure and the stellar and BH masses in the vicinity of a ${\sim}10^{12} \, M_{\odot }$ halo which we identified in bluetides at z ∼ 7 hosting a ${\sim}10^9 \, M_{\odot }$ SMBH. Among our constrained simulations, only the ones with a low-tidal field and high-density peak in the initial conditions induce the fastest BH growth required to explain the z > 6 quasars. We run two sets of simulations with different BH seed masses of 5 × 103, 5 × 104, and $5 \times 10^5 \, h^{-1} M_{\odot }$, (i) with the same ratio of halo to BH seed mass and (ii) with the same halo threshold mass. At z = 6, all the SMBHs converge in mass to ${\sim}10^9 \, M_{\odot }$ except for the one with the smallest seed in (ii) undergoing critical BH growth and reaching 108 – $10^9 \, M_{\odot }$, albeit with most of the growth in (ii) delayed compared to set (i). The finding of eight BH mergers in the small-seed scenario (four with masses 104 – $10^6 \, M_{\odot }$ at z > 12), six in the intermediate-seed scenario, and zero in the large-seed scenario suggests that the vast BHs in the small-seed scenario merge frequently during the early phases of the growth of SMBHs. The increased BH merger rate for the low-mass BH seed and halo threshold scenario provides an exciting prospect for discriminating BH formation mechanisms with the advent of multimessenger astrophysics and next-generation gravitational wave facilities.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The host dark matter haloes of the first quasars;Monthly Notices of the Royal Astronomical Society;2024-04-30

2. The Dawn of Black Holes;Handbook of X-ray and Gamma-ray Astrophysics;2024

3. The growth of the gargantuan black holes powering high-redshift quasars and their impact on the formation of early galaxies and protoclusters;Monthly Notices of the Royal Astronomical Society;2023-10-25

4. Inflationary Cosmology in a non-minimal f(R,T) gravity theory using a RT mixing term;Physics of the Dark Universe;2023-05

5. The Dawn of Black Holes;Handbook of X-ray and Gamma-ray Astrophysics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3