Biofluorescent Worlds – II. Biological fluorescence induced by stellar UV flares, a new temporal biosignature

Author:

O'Malley-James Jack T1,Kaltenegger Lisa12

Affiliation:

1. Carl Sagan Institute at Cornell University, Ithaca, NY 14853, USA

2. Astronomy Department, Cornell University, Ithaca, NY 14853, USA

Abstract

ABSTRACT Our first targets in the search for signs of life are orbiting nearby M stars, such as the planets in the Proxima Centauri, Ross-128, LHS-1140, and TRAPPIST-1 systems. Future ground-based discoveries, and those from the TESS mission, will provide additional close-by targets. However, young M stars tend to be very active, flaring frequently and causing UV fluxes on the surfaces of HZ planets to become biologically harmful. Common UV-protection methods used by life (e.g. living underground, or underwater) would make a biosphere harder to detect. However, photoprotective biofluorescence, ‘up-shifting’ UV to longer, safer wavelengths, could increase a biosphere's detectability. Here we model intermittent emission at specific wavelengths in the visible spectrum caused by biofluorescence as a new temporal biosignature for planets around active M stars. We use the absorption and emission characteristics of common coral fluorescent pigments and proteins to create model spectra and colours for an Earth-like planet in such a system, accounting for different surface features, atmospheric absorption, and cloud cover. We find that for a cloud-free planet biofluorescence could induce a temporary change in brightness that is significantly higher than the reflected flux alone, causing up to two orders-of-magnitude change in planet–star contrast, compared to a non-fluorescent state, if the surface is fully covered by a highly efficient fluorescent biosphere. Hence, UV-flare induced biofluorescence presents previously unexplored possibilities for a new temporal biosignature that could be detectable by instruments like those planned for the extremely large telescope and could reveal hidden biospheres.

Funder

Simons Foundation

Carl Sagan Institute at Cornell

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3