Photosynthetic Fluorescence from Earthlike Planets around Sunlike and Cool Stars

Author:

Komatsu YuORCID,Hori YasunoriORCID,Kuzuhara MasayukiORCID,Kosugi MakikoORCID,Takizawa KenjiORCID,Narita NorioORCID,Omiya MasashiORCID,Kim EunchulORCID,Kusakabe NobuhikoORCID,Meadows VictoriaORCID,Tamura MotohideORCID

Abstract

Abstract Remote sensing of the Earth has demonstrated that photosynthesis is traceable as the vegetation red edge (VRE), which is a steep rise in the reflection spectrum of vegetation, and as solar-induced fluorescence. This study examines the detectability of biological fluorescence from two types of photosynthetic pigments, chlorophylls (Chls) and bacteriochlorophylls (BChls), on Earthlike planets with oxygen-rich/poor and anoxic atmospheres around the Sun and M dwarfs. Atmospheric absorption, such as H2O, CH4, O2, and O3, and the VRE obscure the fluorescence emissions from Chls and BChls. We find that the BChl-based fluorescence for wavelengths of 1000–1100 nm, assuming the spectrum of BChl b–bearing purple bacteria, could provide a suitable biosignature, but only in the absence of water cloud coverage or other strong absorbers near 1000 nm. The Chl fluorescence is weaker for several reasons, e.g., spectral blending with the VRE. The apparent reflectance excess is greatly increased in both the Chl and BChl cases around TRAPPIST-1, due to the fluorescence and stellar absorption lines. This could be a promising feature for detecting the fluorescence around ultracool red dwarfs using follow-up ground-based observations at high spectral resolution; however, this would require a long time around Sunlike stars, even for a LUVOIR-like space mission. Moreover, the simultaneous detection of fluorescence and the VRE is the key to identifying traces of photosynthesis, because absorption, reflectance, and fluorescence are physically connected. For further validation of the fluorescence detection, the nonlinear response of biological fluorescence as a function of light intensity could be considered.

Funder

Japan Society for the Promotion of Science London

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Overview of Exoplanet Biosignatures;Reviews in Mineralogy and Geochemistry;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3