Lithium in red giants: the roles of the He-core flash and the luminosity bump

Author:

Deepak 12ORCID,Lambert David L3ORCID

Affiliation:

1. Indian Institute of Astrophysics, Bangalore 560034, India

2. Pondicherry University, R. V. Nagara, Kalapet, Puducherry 605014, India

3. W.J. McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

ABSTRACT Lithium abundances for red giants in the GALAH DR3 survey are studied. The rare examples of Li-enriched stars with abundances A(Li) ≥1.5 are confirmed to be He-core burning stars belonging to or evolved from the red clump with similar masses and metallicity: M ≃ 1.1 ± 0.2 M⊙ and [Fe/H] ≃ −0.3 ± 0.3. Li enrichment over the Li abundance present in a star’s predecessor at the tip of the red giant branch likely occurs in all these red clump stars. Examination of the elemental abundances (C to Eu) in the GALAH catalogue shows no anomalous abundances in red clump giants and, in particular, no dependence on the Li abundance, which ranges over at least five dex. Lithium synthesis is attributed to the He-core flash occurring in stars at the tip of the red giant branch. Models from the Modules for Experiments in Stellar Astrophysics (MESA) match the observed evolution of these stars along the red giant branch and to the red clump but only at the low effective temperature end of the observed spread of red clump giants. Run of Li abundance on the red giant branch is fairly well reproduced by MESA models. A speculation is presented that the series of He-core flashes not only leads to 7Li synthesis from a star’s internal reservoir of 3He but also may lead to internal restructuring leading to the observed effective temperature spread of red clump stars at about a constant luminosity. Giants exhibiting marked Li enrichments are not found at other evolutionary phases and, in particular, not directly associated with the luminosity bump on the red giant branch for which the Li abundance increase does not exceed 0.3 dex.

Funder

Australian Astronomical Observatory

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3