TheGaia-ESO Survey: Preparing the ground for 4MOST and WEAVE galactic surveys

Author:

Nepal S.ORCID,Guiglion G.,de Jong R. S.ORCID,Valentini M.,Chiappini C.,Steinmetz M.ORCID,Ambrosch M.ORCID,Pancino E.ORCID,Jeffries R. D.ORCID,Bensby T.ORCID,Romano D.ORCID,Smiljanic R.ORCID,Dantas M. L. L.ORCID,Gilmore G.ORCID,Randich S.ORCID,Bayo A.,Bergemann M.,Franciosini E.ORCID,Jiménez-Esteban F.ORCID,Jofré P.,Morbidelli L.,Sacco G. G.,Tautvaišienė G.ORCID,Zaggia S.

Abstract

Context.With its origin coming from several sources (Big Bang, stars, cosmic rays) and given its strong depletion during its stellar lifetime, the lithium element is of great interest as its chemical evolution in the Milky Way is not well understood at present. To help constrain stellar and galactic chemical evolution models, numerous and precise lithium abundances are necessary for a large range of evolutionary stages, metallicities, and Galactic volume.Aims.In the age of stellar parametrization on industrial scales, spectroscopic surveys such as APOGEE, GALAH, RAVE, and LAMOST have used data-driven methods to rapidly and precisely infer stellar labels (atmospheric parameters and abundances). To prepare the ground for future spectroscopic surveys such as 4MOST and WEAVE, we aim to apply machine learning techniques to lithium measurements and analyses.Methods.We trained a convolution neural network (CNN), couplingGaia-ESO Survey iDR6 stellar labels (Teff, log(g), [Fe/H], and A(Li)) and GIRAFFE HR15N spectra, to infer the atmospheric parameters and lithium abundances for ∼40 000 stars. The CNN architecture and accompanying notebooks are available online via GitHub.Results.We show that the CNN properly learns the physics of the stellar labels, from relevant spectral features through a broad range of evolutionary stages and stellar parameters. The lithium feature at 6707.8 Å is successfully singled out by our CNN, among the thousands of lines in the GIRAFFE HR15N setup. Rare objects such as lithium-rich giants are found in our sample. This level of performance is achieved thanks to a meticulously built, high-quality, and homogeneous training sample.Conclusions.The CNN approach is very well adapted for the next generations of spectroscopic surveys aimed at studying (among other elements) lithium, such as the 4MIDABLE-LR/HR (4MOST Milky Way disk and bulge low- and high-resolution) surveys. In this context, the caveats of machine-learning applications should be appropriately investigated, along with the realistic label uncertainties and upper limits for abundances.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3