Fundamental challenges to remote sensing of exo-earths

Author:

Paradise Adiv1ORCID,Menou Kristen123,Lee Christopher3,Fan Bo Lin1

Affiliation:

1. David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada

2. Physics and Astrophysics Group, Department of Physical and Environmental Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada

3. Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada

Abstract

ABSTRACT Inferring the climate and surface conditions of terrestrial exoplanets in the habitable zone is a major goal for the field of exoplanet science. This pursuit will require both statistical analyses of the population of habitable planets as well as in-depth analyses of the climates of individual planets. Given the close relationship between habitability and surface liquid water, it is important to ask whether the fraction of a planet’s surface where water can be a liquid, χhab, can be inferred from observations. We have produced a diverse bank of 1874 3D climate models and computed the full-phase reflectance and emission spectrum for each model to investigate whether surface climate inference is feasible with high-quality direct imaging or secondary eclipse spectroscopy. These models represent the outcome of approximately 200 000 total simulated years of climate and over 50 000 CPU-hours, and the roughly 100 GB model bank and its associated spectra are being made publicly available for community use. We find that there are correlations between spectra and χhab that will permit statistical approaches. However, spectral degeneracies in the climate observables produced by our model bank indicate that inference of individual climates is likely to be model-dependent, and inference will likely be impossible without exhaustive explorations of the climate parameter space. The diversity of potential climates on habitable planets therefore poses fundamental challenges to remote sensing efforts targeting exo-Earths.

Funder

University of Toronto

Natural Sciences and Engineering Research Council of Canada

Canadian Institute for Theoretical Astrophysics

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3