Haro 11 – Untying the knots of the nuclear starburst

Author:

Sirressi M1,Adamo A1,Hayes M1ORCID,Bik A1,Strandänger M1,Runnholm A1ORCID,Oey M S2,Östlin G1,Menacho V1ORCID,Smith L J3

Affiliation:

1. Department of Astronomy and Oskar Klein Centre; Stockholm University, AlbaNova SE-106 91 Stockholm, Sweden

2. Department of Astronomy, University of Michigan, 1085 South University Ave., Ann Arbor, MI 48109, USA

3. European Space Agency (ESA), ESA Office, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

Abstract

ABSTRACT Star formation is a clustered process that regulates the structure and evolution of galaxies. We investigate this process in the dwarf galaxy Haro 11, forming stars in three knots (A, B, and C). The exquisite resolution of HST imaging allows us to resolve the starburst into tens of bright star clusters. We derive masses between 105 and $10^7\, \rm M_{\odot }$ and ages younger than 20 Myr, using photometric modelling. We observe that the clustered star formation has propagated from knot C (the oldest) through knot A (in between) towards knot B (the youngest). We use aperture-matched ultraviolet and optical spectroscopy (HST + MUSE) to independently study the stellar populations of Haro 11 and determine the physical properties of the stellar populations and their feedback in 1-kpc diameter regions. We discuss these results in light of the properties of the ionized gas within the knots. We interpret the broad blue-shifted components of the optical emission lines as outflowing gas (vmax ∼ 400 km/s). The strongest outflow is detected in knot A with a mass rate of $\dot{M}_{\mathrm{ out}}\sim 10\, \rm M_{\odot }/yr$, 10 times higher than the star formation in the same region. Knot B hosts a young and not fully developed outflow, whereas knot C has likely been already evacuated. Because Haro 11 has properties similar to high-redshift unresolved galaxies, our work can additionally aid the understanding of star formation at high redshift, a window that will be opened by upcoming facilities.

Funder

Swedish Research Council

Swedish National Space Agency

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3