Gravitational microlensing time delays at high optical depth: image parities and the temporal properties of fast radio bursts

Author:

Lewis Geraint F1ORCID

Affiliation:

1. Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006, Australia

Abstract

ABSTRACT Due to differing gravitational potentials and path lengths, gravitational lensing induces time delays between multiple images of a source that, for solar mass objects, are of the order of ∼10−5 s. If an astrophysically compact source, such as a fast radio burst (FRB), is observed through a region with a high optical depth of such microlensing masses, this gravitational lensing time delay can be imprinted on short time-scale transient signals. In this paper, we consider the impact of the parity of the macroimage on the resultant microlensing time delays. It is found that this parity is directly imprinted on the microlensing signal, with macroimages formed at minima of the time arrival surface beginning with the most highly magnified microimages and then progressing to the fainter microimages. For macroimages at the maxima of the time arrival surface, this situation is reversed, with fainter images observed first and finishing with the brightest microimages. For macroimages at saddle points, the signal again begins with fainter images, followed by brighter images before again fading through the fainter microimages. The growing populations of cosmologically distant bursty transient sources will undoubtedly result in the discovery of strong lensed, multiply imaged FRBs, which will be susceptible to microlensing by compact masses. With the temporal resolution being offered by modern and future facilities, the detection of microlensing-induced time delays will reveal the parities of the gravitational lens macroimages, providing additional constraints on macrolensing mass models and improving the efficacy of these transient sources as cosmological probes.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3