FRBs Lensed by Point Masses. II. The Multipeaked FRBs from the Point View of Microlensing

Author:

Chen XuechunORCID,Shu YipingORCID,Li Guoliang,Zheng WenwenORCID

Abstract

Abstract The microlensing effect has developed into a powerful technique for a diverse range of applications including exoplanet discoveries, structure of the Milky Way, constraints on MAssive Compact Halo Objects, and measurements of the size and profile of quasar accretion disks. In this paper, we consider a special type of microlensing events where the sources are fast radio bursts (FRBs) with ∼milliseconds (ms) durations for which the relative motion between the lens and source is negligible. In this scenario, it is possible to temporally resolve the individual microimages. As a result, a method beyond the inverse ray shooting method, which only evaluates the total magnification of all microimages, is needed. We therefore implement an algorithm for identifying individual microimages and computing their magnifications and relative time delays. We validate our algorithm by comparing to analytical predictions for a single microlens case and find excellent agreement. We show that the superposition of pulses from individual microimages produces a light curve that appears as multipeaked FRBs. The relative time delays between pulses can reach 0.1–1 ms for stellar-mass lenses and hence can already be resolved temporally by current facilities. Although not yet discovered, microlensing of FRBs will become regular events and surpass the number of quasar microlensing events in the near future when 104−5 FRBs are expected to be discovered on a daily basis. Our algorithm provides a way of generating the microlensing light curve that can be used for constraining stellar-mass distribution in distant galaxies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasma lensing interpretation of FRB 20201124A bursts at the end of September 2021;Monthly Notices of the Royal Astronomical Society;2024-06-13

2. Microlensing bias on the detection of strong lensing gravitational wave;Science China Physics, Mechanics & Astronomy;2024-05-14

3. Exploring f(T) gravity via strongly lensed fast radio bursts;Monthly Notices of the Royal Astronomical Society;2024-01-19

4. Stellar prospects for FRB gravitational lensing;Monthly Notices of the Royal Astronomical Society;2023-03-09

5. Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study;Science China Physics, Mechanics & Astronomy;2022-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3