Ionization-driven intrinsic absorption line variability of BAL quasars in the Stripe 82 region

Author:

Vivek M1

Affiliation:

1. Davey Lab, Pennsylvania State University, 525, State College, PA 16802, USA

Abstract

Abstract We investigate the connection between the intrinsic C iv absorption line variability and the continuum flux changes of broad absorption line (BAL) quasars using a sample of 78 sources in the Stripe 82 region. The absorption trough variability parameters are measured using the archival multi-epoch spectroscopic data from the Sloan Digital Sky Survey (SDSS), and the continuum flux variability parameters are estimated from the photometric light curves obtained by the SDSS and the Catalina Real-Time Survey surveys. We find evidence for weak correlations (ρs ∼ 0.3) between the intrinsic C iv absorption line variability and the quasar continuum variability for the final sample of 78 BAL quasars. The correlation strengths improve (ρs ∼ 0.5) for the ‘high-signal-to-noise ratio (SNR)’ sample sources that have higher spectral SNR. Using two subsets of the high-SNR sample differing on the absorption trough depth, we find that the shallow-trough subset shows an even stronger correlation (ρs ∼ 0.6), whereas the deep-trough subset does not show any correlation between the absorption line variability and the continuum variability. These results point to the important role of saturation effects in the correlation between the absorption line variability and the continuum variability of BAL quasars. Considering other effects that can also smear the correlation, we conclude that the actual correlation between the absorption line and continuum variability is even stronger.

Funder

Alfred P. Sloan Foundation

National Science Foundation

U.S. Department of Energy

National Aeronautics and Space Administration

Max Planck Society

Higher Education Funding Council for England

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3