Abstract
Abstract
Broad absorption line quasars are actively accreting supermassive black holes that have strong outflows characterized by broad absorption lines in their rest-UV spectra. Variability in these absorption lines occurs over months to years depending on the source. WPVS 007, a low-redshift, low-luminosity narrow-line Seyfert 1 (NLS1) shows strong variability over shorter timescales, providing a unique opportunity to study the driving mechanism behind this variability that may mimic longer-scale variability in much more massive quasars. We present the first variability study using the spectral synthesis code SimBAL, which provides velocity-resolved changes in physical conditions of the gas using constraints from multiple absorption lines. Overall, we find WPVS 007 to have a highly ionized outflow with a large mass-loss rate and kinetic luminosity. We determine the primary cause of the absorption-line variability in WPVS 007 to be a change in covering fraction of the continuum by the outflow. This study is the first SimBAL analysis where multiple epochs of observation were fit simultaneously, demonstrating the ability of SimBAL to use the time domain as an additional constraint in spectral models.
Funder
Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada
National Science Foundation
Space Telescope Science Institute
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献