Mesoscale modelling of optical turbulence in the atmosphere: the need for ultrahigh vertical grid resolution

Author:

Basu S1ORCID,Osborn J2ORCID,He P3,DeMarco A W4

Affiliation:

1. Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands

2. Department of Physics, Centre for Advanced Instrumentation, Durham University, Durham, DH1 3LE, UK

3. Department of Aerospace Engineering, University of Michigan, Ann Arbor, 48109 Michigan, USA

4. United States Air Force, Washington D.C. 20330, USA

Abstract

ABSTRACT The high-fidelity modelling of optical turbulence is critical to the design and operation of a new class of emerging highly sophisticated astronomical telescopes and adaptive optics instrumentation. In this study, we perform retrospective simulations of optical turbulence over the Hawaiian islands using a mesoscale model. The simulated results are validated against thermosonde data. We focus on turbulence in the free atmosphere, above the atmospheric boundary layer. The free atmosphere is particularly important for adaptive optics performance and for sky coverage calculations and hence has significant impact on performance optimization and scheduling of observations. We demonstrate that a vertical grid spacing of 100 m or finer is needed to faithfully capture the intrinsic variabilities of observed clear air turbulence. This is a particularly timely study because the next generation of extremely large telescopes are currently under construction and their associated suite of instruments are in the design phase. Knowledge of the expected accuracy of optical turbulence simulations and real-time forecasts will enable the design teams to (i) test and develop instrument designs and (ii) formulate operational procedure.

Funder

UK Research and Innovation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3