Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models

Author:

Quatresooz Florian1,Griffiths RyanORCID,Bardou Lisa,Wilson Richard,Osborn JamesORCID,Vanhoenacker-Janvier Danielle1,Oestges Claude1

Affiliation:

1. ICTEAM Institute, Université Catholique de Louvain (UCLouvain)

Abstract

Future satellite-to-ground optical communication systems will benefit from accurate forecasts of atmospheric optical turbulence; namely for site selection, for the routing and the operation of optical links, and for the design of optical communication terminals. This work presents a numerical approach based on the Weather Research and Forecasting software that enables continuous forecast of the refractive index structure parameter, C n 2, vertical profiles. Two different C n 2 models are presented and compared. One is based on monitoring the turbulent kinetic energy, while the other is a hybrid model using the Tatarskii equation to depict the free atmosphere region, and the Monin-Obukhov similarity theory for describing the boundary layer. The validity of both models is assessed by using thermosonde measurements from the Terrain-induced Rotor Experiment campaign, and from day and night measurements of the coherence length collected during a six-day campaign at Paranal observatory by a Shack-Hartmann Image Motion Monitor. The novelty of this work is the ability of the presented approach to continuously predict optical turbulence both during daytime and nighttime, and its validation with measurements in day and night conditions.

Funder

Science and Technology Facilities Council

UK Research and Innovation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Reference49 articles.

1. V The effects of atmospheric turbulence in optical astronomy;Roddier,1981

2. Measuring astronomical seeing: The DA/IAC DIMM

3. From Differential Image Motion to Seeing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3