The braking index of PSR B0540−69 and the associated pulsar wind nebula emission after spin-down rate transition

Author:

Wang L J1ORCID,Ge M Y1,Wang J S2,Weng S S3ORCID,Tong H4ORCID,Yan L L5,Zhang S N16,Dai Z G78,Song L M16

Affiliation:

1. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

2. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China

3. Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China

4. School of Physics and Electronic Engineering, Guangzhou University, 510006 Guangzhou, China

5. School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

6. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China

7. School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China

8. Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China

Abstract

ABSTRACT In 2011 December, PSR B054−69 experienced a spin-down rate transition (SRT), after which the spin-down power of the pulsar increased by $\sim 36{{\ \rm per\ cent}}$. About 1000 d after the SRT, the X-ray luminosity of the associated pulsar wind nebula (PWN) was found to brighten by $32\pm 8{{\ \rm per\ cent}}$. After the SRT, the braking index n of PSR B0540−69 changes from n = 2.12 to 0.03 and then keeps this value for about five years before rising to n = 0.9 in the following years. We find that most of the current models have difficulties in explaining the measured braking index. One exceptive model of the braking index evolution is the increasing dipole magnetic field of PSR B0540−69. We suggest that the field increase may result from some instabilities within the pulsar core that enhance the poloidal component at the price of toroidal component of the magnetic field. The increasing dipole magnetic field will result in the X-ray brightening of the PWN. We fit the PWN X-ray light curve by two models: one assumes a constant magnetic field within the PWN during the brightening and the other assumes an enhanced magnetic field proportional to the energy density of the PWN. It appears that the two models fit the data well, though the later model seems to fit the data a bit better. This provides marginal observational evidence that magnetic field in the PWN is generated by the termination shock. Future high-quality and high-cadence data are required to draw a solid conclusion.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3