Identifying strongly lensed gravitational waves with the third-generation detectors

Author:

Gao Zijun1,Liao Kai1ORCID,Yang Lilan2ORCID,Zhu Zong-Hong13

Affiliation:

1. Department of Astronomy, School of Physics and Technology, Wuhan University , Wuhan 430072 , China

2. Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo , Chiba 277-8583 , Japan

3. Department of Astronomy, Beijing Normal University , Beijing 100875 , China

Abstract

ABSTRACT The joint detection of gravitational wave (GW) signals by a network of instruments will increase the detecting ability of faint and far GW signals with higher signal-to-noise ratios (SNRs), which could improve the ability of detecting the lensed GWs as well, especially for the third-generation (3G) detectors, e.g. Einstein Telescope (ET) and Cosmic Explorer (CE). However, identifying strongly lensed gravitational waves (SLGWs) is still challenging. We focus on the identification ability of 3G detectors in this article. We predict and analyse the SNR distribution of SLGW signals and prove only 50.6 per cent of SLGW pairs detected by ET alone can be identified by lens Bayes factor (LBF), which is a popular method at present to identify SLGWs. For SLGW pairs detected by CEET network, owing to the superior spatial resolution, this number rises to 87.3 per cent. Moreover, we get an approximate analytical relation between SNR and LBF. We give clear SNR limits to identify SLGWs and estimate the expected yearly detection rates of galaxy-scale lensed GWs that can get identified with 3G detector network.

Funder

National Natural Science Foundation of China

Wuhan University

JSPS

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microlensing bias on the detection of strong lensing gravitational wave;Science China Physics, Mechanics & Astronomy;2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3