Colliding winds in and around the stellar group IRS 13E at the galactic centre

Author:

Wang Q Daniel12ORCID,Li Jun123,Russell Christopher M P2,Cuadra Jorge2

Affiliation:

1. Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA

2. Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 782-0436 Santiago, Chile

3. Department of Astronomy, Beijing Normal University, Beijing 100875, China

Abstract

ABSTRACT IRS 13E is an enigmatic compact group of massive stars located in projection only 3.6 arcsec away from Sgr A*. This group has been suggested to be bounded by an intermediate-mass black hole (IMBH). We present a multiwavelength study of the group and its interplay with the environment. Based on Chandra observations, we find the X-ray spectrum of IRS 13E can be well characterized by an optically thin thermal plasma. The emission peaks between two strongly mass-losing Wolf–Rayet stars of the group. These properties can be reasonably well reproduced by simulated colliding winds of these two stars. However, this scenario underpredicts the X-ray intensity in outer regions. The residual emission likely results from the ram-pressure confinement of the IRS 13E group wind by the ambient medium and is apparently associated with a shell-like warm gas structure seen in Pa α and in ALMA observations. These latter observations also show strongly peaked thermal emission with unusually large velocity spread between the two stars. These results indicate that the group is colliding with the bar of the dense cool gas mini-spiral around Sgr A*. The extended X-ray morphology of IRS 13E and its association with the bar further suggest that the group is physically much farther away than the projected distance from Sgr A*. The presence of an IMBH, while favourable to keep the stars bound together, is not necessary to explain the observed stellar and gas properties of IRS 13E.

Funder

National Aeronautics and Space Administration

China Scholarship Council

Fondo Nacional de Desarrollo Científico y Tecnológico

Consejo Nacional de Innovación, Ciencia y Tecnología

Max Planck Society

European Space Agency

National Science Foundation

National Institute of National Sciences

National Rearch Concil of Canada

Minister of Science and Technology

Korea Astronomy and Space Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3