The Evaporating Massive Embedded Stellar Cluster IRS 13 Close to Sgr A*. I. Detection of a Rich Population of Dusty Objects in the IRS 13 Cluster

Author:

Peißker FlorianORCID,Zajaček MichalORCID,Thomkins Lauritz,Eckart AndreasORCID,Labadie LucasORCID,Karas VladimírORCID,Sabha Nadeen B.ORCID,Steiniger LukasORCID,Melamed MariaORCID

Abstract

Abstract A detailed analysis of the nuclear star cluster not only concedes the existence of the S cluster, with its fast-moving stars and the supermassive black hole Sgr A*. It also reveals an embedded region of gas and dust with an exceptionally high stellar density called IRS 13. The IRS 13 cluster can be divided into the northern and eastern counterparts, called IRS 13N and IRS 13E, respectively. This work will focus on both regions and study their most prominent members using rich infrared and radio/submillimeter data baselines. Applying a multiwavelength analysis enables us to determine a comprehensive photometric footprint of the investigated cluster sample. Using the ray-tracing-based radiative transfer model HYPERION, the spectral energy distribution of the IRS 13 members suggests a stellar nature of the dusty sources. These putative young stellar objects (YSOs) have a comparable spectroscopic identification to the D and G sources in or near the S cluster. Furthermore, we report the existence of a population of dusty sources in IRS 13 that can be mostly identified in the H, K, and L band. We propose that, together with the objects reported in the literature, this population is the outcome of a recent star formation process. Furthermore, we report that these presumably young objects are arranged in a disk structure. Although it cannot be excluded that the intrinsic arrangement of IRS 13 does show a disk structure, we find indications that the investigated cluster sample might be related to the counterclockwise disk.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3