Abstract
ABSTRACT
Wave (fuzzy) dark matter ($\psi \rm {DM}$) consists of ultralight bosons, featuring a solitonic core within a granular halo. Here we extend $\psi \rm {DM}$ to two components, with distinct particle masses m and coupled only through gravity, and investigate the resulting soliton–halo structure via cosmological simulations. Specifically, we assume $\psi \rm {DM}$ contains 75 per cent major component and 25 per cent minor component, fix the major-component particle mass to $m_{\rm major}=1\times 10^{-22}\, \rm eV$, and explore two different minor-component particle masses with mmajor: mminor = 3: 1 and 1: 3, respectively. For mmajor: mminor = 3: 1, we find that (i) the major- and minor-component solitons coexist, have comparable masses, and are roughly concentric. (ii) The soliton peak density is significantly lower than the single-component counterpart, leading to a smoother soliton-to-halo transition and rotation curve. (iii) The combined soliton mass of both components follows the same single-component core–halo mass relation. In dramatic contrast, for mmajor: mminor = 1: 3, a minor-component soliton cannot form with the presence of a stable major-component soliton; the total density profile, for both halo and soliton, is thus dominated by the major component and closely follows the single-component case. To support this finding, we propose a toy model illustrating that it is difficult to form a soliton in a hot environment associated with a deep gravitational potential. The work demonstrates that the extra flexibility added to the multi-component $\psi \rm {DM}$ model can resolve observational tensions over the single-component model while retaining its key features.
Funder
Ministry of Education
National Science and Technology Council
NTU
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献