Small-scale structure in vector dark matter

Author:

Amin Mustafa A.,Jain Mudit,Karur Rohith,Mocz Philip

Abstract

AbstractWe investigate the differences in the small-scale structure of vector dark matter (VDM) and scalar dark matter (SDM) using 3+1 dimensional simulations of single/mul­ticomponent Schrödinger-Poisson system. We find that the amount of wave interference, core-to-halo mass ratio (and its scatter), spin of the core, as well as the shape of the central regions of dark matter halos can distinguish VDM and SDM. Starting with a collection of idealized halos (self-gravitating solitons) as an initial condition, we show that the system dynamically evolves to an approximately spherically symmetric configuration that has a core surrounded by a halo of interference patterns in the mass density. In the vector case, the central soliton in less dense and has a smoother transition to anr-3tail compared to the scalar case. As compared to SDM, wave interference in VDM is ∼ 1/√3 times smaller, resulting in fewer low and high density regions, and more diffuse granules in the halo. The ratio of VDM core mass to the total halo mass is lower than that in SDM, with a steeper dependence on the total energy of the system and a slightly larger scatter. Finally, we also initiate a study of the evolution of intrinsic spin angular momentum in the VDM case. We see a positive correlation between the total intrinsic spin in the simulation and the spin of the final central core, with significant scatter. We see large intrinsic spin in the core being possible even with vanishing amounts total angular momentum in the initial conditions (at least instantaneously). Our results point towards the possibility of distinguishing VDM from SDM using astrophysical and terrestrial observations.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference81 articles.

1. Planck 2018 results. Part VI. Cosmological parameters;Aghanim;Astron. Astrophys.,2020

2. History of dark matter;Bertone;Rev. Mod. Phys.,2018

3. First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations;Iršič;Phys. Rev. Lett.,2017

4. Macro Dark Matter;Jacobs;Mon. Not. Roy. Astron. Soc.,2015

5. Wave Dark Matter;Hui;Ann. Rev. Astron. Astrophys.,2021

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3