Low-velocity impacts into granular material: application to small-body landing

Author:

Murdoch Naomi1ORCID,Drilleau Melanie1,Sunday Cecily12,Thuillet Florian2,Wilhelm Arnaud1,Nguyen Gautier1,Gourinat Yves1

Affiliation:

1. Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, F-31400 Toulouse, France

2. Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Université Côte d’Azur, F-06304 Nice, France

Abstract

ABSTRACT With the flourishing number of small body missions that involve surface interactions, understanding the mechanics of spacecraft – surface interactions is crucial for improving our knowledge about the landing phases of space missions, for preparing spacecraft operations, and for interpreting the results of measurements made during the surface interactions. Given their regolith-covered surfaces, the process of landing on a small body can be considered as an impact at low-velocity on to a granular material in reduced-gravity. In order to study the influence of the surface material, projectile shape, and gravity on the collision dynamics, we used two experimental configurations (one for terrestrial gravity experiments and one for reduced-gravity experiments) to perform low-velocity collisions into different types of granular materials: quartz sand, and two different sizes of glass beads (1.5 and 5 mm diameter). Both a spherical and a cubic projectile (with varying impact orientation) were used. The experimental data support a drag model for the impact dynamics composed of both a hydrodynamic drag force and quasi-static resistance force. The hydrodynamic and quasi-static contributions are related to the material frictional properties, the projectile geometry, and the gravity. The transition from a quasi-static to a hydrodynamical regime is shown to occur at lower impact velocities in reduced-gravity trials than in terrestrial gravity trials, indicating that regolith has a more fluid-like behaviour in low-gravity. The reduced quasi-static regime of a granular material under low-gravity conditions leads to a reduction in the strength, resulting in a decreased resistance to penetration and larger penetration depths.

Funder

CNES

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3