Disappearing thermal X-ray emission as a tell-tale signature of merging massive black hole binaries

Author:

Krauth Luke Major1ORCID,Davelaar Jordy234ORCID,Haiman Zoltán12,Westernacher-Schneider John Ryan5,Zrake Jonathan6ORCID,MacFadyen Andrew7

Affiliation:

1. Department of Physics, Columbia University , New York, NY 10027 , USA

2. Department of Astronomy, Columbia University , New York, NY 10027 , USA

3. Astrophysics Laboratory, Columbia University , 550 W 120th Str, New York, NY 10027 , USA

4. Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Avenue, New York, NY 10010 , USA

5. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden , the Netherlands

6. Department of Physics and Astronomy, Clemson University , Clemson, SC 29634 , USA

7. Center for Cosmology and Particle Physics, Physics Department, New York University , New York, NY 10003 , USA

Abstract

ABSTRACT The upcoming Laser Interferometer Space Antenna (LISA) is expected to detect gravitational waves (GWs) from massive black hole binaries (MBHB). Finding the electromagnetic (EM) counterparts for these GW events will be crucial for understanding how and where MBHBs merge, measuring their redshifts, constraining the Hubble constant and the graviton mass, and for other novel science applications. However, due to poor GW sky localization, multiwavelength, time-dependent EM models are needed to identify the right host galaxy. We studied merging MBHBs embedded in a circumbinary disc (CBD) using high-resolution two-dimensional simulations, with a Γ-law equation of state, incorporating viscous heating, shock heating, and radiative cooling. We simulate the binary from large separation until after merger, allowing us to model the decoupling of the binary from the CBD. We compute the EM signatures and identify distinct features before, during, and after the merger. Our main result is a multiband EM signature: we find that the MBHB produces strong thermal X-ray emission until 1–2 d prior to the merger. However, as the binary decouples from the CBD, the X-ray-bright minidiscs rapidly shrink in size, become disrupted, and the accretion rate drops precipitously. As a result, the thermal X-ray luminosity drops by orders of magnitude, and the source remains X-ray dark for several days, regardless of any post-merger effects such as GW recoil or mass-loss. Looking for the abrupt spectral change where the thermal X-ray disappears is a tell-tale EM signature of LISA mergers that does not require extensive pre-merger monitoring.

Funder

National Science Foundation

National Aeronautics and Space Administration

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3