Affiliation:
1. McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2. Department of Physics, Northeastern University, Boston, MA 02115, USA
3. Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne, CH-1290 Versoix, Switzerland
Abstract
ABSTRACT
We use galaxies from the illustristng, massiveblack-ii, and illustris-1 hydrodynamic simulations to investigate the behaviour of large scale galaxy intrinsic alignments. Our analysis spans four redshift slices over the approximate range of contemporary lensing surveys z = 0−1. We construct comparable weighted samples from the three simulations, which we then analyse using an alignment model that includes both linear and quadratic alignment contributions. Our data vector includes galaxy–galaxy, galaxy–shape, and shape–shape projected correlations, with the joint covariance matrix estimated analytically. In all of the simulations, we report non-zero IAs at the level of several σ. For a fixed lower mass threshold, we find a relatively strong redshift dependence in all three simulations, with the linear IA amplitude increasing by a factor of ∼2 between redshifts z = 0 and z = 1. We report no significant evidence for non-zero values of the tidal torquing amplitude, A2, in TNG, above statistical uncertainties, although MBII favours a moderately negative A2 ∼ −2. Examining the properties of the TATT model as a function of colour, luminosity and galaxy type (satellite or central), our findings are consistent with the most recent measurements on real data. We also outline a novel method for constraining the TATT model parameters directly from the pixelized tidal field, alongside a proof-of-concept exercise using TNG. This technique is shown to be promising, although comparison with previous results obtained via other methods is non-trivial.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献