Redshift inference from the combination of galaxy colours and clustering in a hierarchical Bayesian model – Application to realistic N-body simulations

Author:

Alarcon Alex12ORCID,Sánchez Carles3,Bernstein Gary M3ORCID,Gaztañaga Enrique12ORCID

Affiliation:

1. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain

2. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

3. Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA

Abstract

ABSTRACT Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift distributions using only broad-band imaging, and can be very sensitive to incomplete or biased priors used for redshift calibration. A hierarchical Bayesian model has recently been developed to estimate those from the robust combination of prior information, photometry of single galaxies, and the information contained in the galaxy clustering against a well-characterized tracer population. In this work, we extend the method so that it can be applied to real data, developing some necessary new extensions to it, especially in the treatment of galaxy clustering information, and we test it on realistic simulations. After marginalizing over the mapping between the clustering estimator and the actual density distribution of the sample galaxies, and using prior information from a small patch of the survey, we find the incorporation of clustering information with photo-z’s tightens the redshift posteriors and overcomes biases in the prior that mimic those happening in spectroscopic samples. The method presented here uses all the information at hand to reduce prior biases and incompleteness. Even in cases where we artificially bias the spectroscopic sample to induce a shift in mean redshift of $\Delta \bar{z} \approx 0.05,$ the final biases in the posterior are $\Delta \bar{z} \lesssim 0.003.$ This robustness to flaws in the redshift prior or training samples would constitute a milestone for the control of redshift systematic uncertainties in future weak lensing analyses.

Funder

Ministerio de Economía y Competitividad

European Regional Development Fund

National Science Foundation

U.S. Department of Energy

Generalitat de Catalunya

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3