X-ray spectroscopy of the starburst feedback in 30 Doradus

Author:

Cheng Yingjie1,Wang Q Daniel1ORCID,Lim Seunghwan1ORCID

Affiliation:

1. Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA

Abstract

ABSTRACT X-ray observations provide a potentially powerful tool to study starburst feedback. The analysis and interpretation of such observations remain challenging, however, due to various complications, including the non-isothermality of the diffuse hot plasma and the inhomogeneity of the foreground absorption. We here illustrate such complications and a way to mitigate their effects by presenting an X-ray spectroscopy of the 30 Doradus nebula in the Large Magellanic Clouds, based on a 100 ks Suzaku observation. We measure the thermal and chemical properties of the hot plasma and quantitatively confront them with the feedback expected from embedded massive stars. We find that our spatially resolved measurements can be well reproduced by a global modelling of the nebula with a lognormal temperature distribution of the plasma emission measure and a lognormal foreground absorption distribution. The metal abundances and total mass of the plasma are consistent with the chemically enriched mass ejection expected from the central OB association and a $\sim 55{{\ \rm per\ cent}}$ mass-loading from the ambient medium. The total thermal energy of the plasma is smaller than what is expected from a simple superbubble model, demonstrating that important channels of energy loss are not accounted for. Our analysis indeed shows tentative evidence for a diffuse non-thermal X-ray component, indicating that cosmic ray acceleration needs to be considered in such a young starburst region. Finally, we suggest that the lognormal modelling may be suitable for the X-ray spectral analysis of other giant H ii regions, especially when spatially resolved spectroscopy is not practical.

Funder

Space Telescope Science Institute

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3