The hierarchical formation of 30 Doradus as seen by JWST

Author:

Fahrion KatjaORCID,De Marchi GuidoORCID

Abstract

The 30 Doradus region in the Large Magellanic Cloud (LMC) is the most energetic star-forming region in the Local Group. It is powered by the feedback from the massive stars in R 136, the 1–2 Myr old central massive cluster. 30 Doradus has therefore long been regarded as a laboratory for studying star and star cluster formation under conditions reminiscent of the early Universe. We use JWST NIRCam observations to analyse how star formation proceeds in the region. Using selections based on theoretical isochrones on colour-magnitude diagrams, we identify populations of different ages. We select pre-main-sequence (PMS) stars and young stellar objects that show excess emission from warm dust or emission lines. Studying the spatial distribution of the different populations, we find that the youngest PMS stars with ages <0.5 Myr are located in an elongated structure that stretches towards the north-east from the central cluster. The same structure is found in the sources that show an infrared excess, appears to be overlapping with cold molecular gas, and covers previously investigated sites of ongoing star formation. Pre-main-sequence stars with ages between 1 and 4 Myr and upper main-sequence stars are concentrated in the centre of R 136, while older stars are more uniformly distributed across the field and likely belong to the LMC field population. Nonetheless, we find stars with excess emission from on dust or emission lines as far as 100 pc from the centre, indicating extended recent star formation. We interpret the elongated structure formed by the youngest PMS stars to be an indication of the still-ongoing hierarchical assembly of the R 136 cluster. Additionally, the lower density of old PMS stars with emission due to ongoing accretion in the central region suggests that feedback from the R 136 stars is effective in disrupting the disks of PMS stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3