Black hole mass estimation for active galactic nuclei from a new angle

Author:

Baron Dalya1,Ménard Brice2

Affiliation:

1. School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel

2. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

Abstract The scaling relations between supermassive black holes and their host galaxy properties are of fundamental importance in the context black hole-host galaxy co-evolution throughout cosmic time. In this work, we use a novel algorithm that identifies smooth trends in complex data sets and apply it to a sample of 2000 type 1 active galactic nuclei (AGNs) spectra. We detect a sequence in emission line shapes and strengths which reveals a correlation between the narrow L([O iii])/L(H β) line ratio and the width of the broad H α. This scaling relation ties the kinematics of the gas clouds in the broad line region to the ionization state of the narrow line region, connecting the properties of gas clouds kiloparsecs away from the black hole to material gravitationally bound to it on sub-parsec scales. This relation can be used to estimate black hole masses from narrow emission lines only. It therefore enables black hole mass estimation for obscured type 2 AGNs and allows us to explore the connection between black holes and host galaxy properties for thousands of objects, well beyond the local Universe. Using this technique, we present the MBH–σ and MBH–M* scaling relations for a sample of about 10 000 type 2 AGNs from Sloan Digital Sky Survey. These relations are remarkably consistent with those observed for type 1 AGNs, suggesting that this new method may perform as reliably as the classical estimate used in non-obscured type 1 AGNs. These findings open a new window for studies of black hole-host galaxy co-evolution throughout cosmic time.

Funder

Alfred P. Sloan Foundation

National Science Foundation

U.S. Department of Energy

University of Arizona

Brookhaven National Laboratory

Carnegie Mellon University

University of Florida

Harvard University

Johns Hopkins University

Lawrence Berkeley National Laboratory

New Mexico State University

New York University

Ohio State University

Pennsylvania State University

University of Portsmouth

Princeton University

University of Tokyo

University of Utah

Vanderbilt University

University of Virginia

University of Washington

Yale University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3