Simulating the dynamics and non-thermal emission of relativistic magnetized jets I. Dynamics

Author:

Mukherjee Dipanjan123ORCID,Bodo Gianluigi3ORCID,Mignone Andrea2ORCID,Rossi Paola3,Vaidya Bhargav4ORCID

Affiliation:

1. Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Pune, Maharashtra, 411007, India

2. Dipartimento di Fisica Generale, Università degli Studi di Torino , Via Pietro Giuria 1, I-10125 Torino, Italy

3. INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese, Italy

4. Discipline of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, 453552, India

Abstract

ABSTRACT We have performed magnetohydrodynamic (MHD) simulations of relativistic jets from supermassive blackholes over a few tens of kpc for a range of jet parameters. One of the primary aims was to investigate the effect of different MHD instabilities on the jet dynamics and their dependence on the choice of jet parameters. We find that two dominant MHD instabilities affect the dynamics of the jet, small-scale Kelvin–Helmholtz (KH) modes and large-scale kink modes, whose evolution depends on internal jet parameters like the Lorentz factor, the ratio of the density and pressure to the external medium, and the magnetization and hence consequently on the jet power. Low power jets are susceptible to both instabilities, kink modes for jets with higher central magnetic field and KH modes for lower magnetization. Moderate power jets do not show appreciable growth of kink modes, but KH modes develop for lower magnetization. Higher power jets are generally stable to both instabilities. Such instabilities decelerate and decollimate the jet while inducing turbulence in the cocoon, with consequences on the magnetic field structure. We model the dynamics of the jets following a generalized treatment of the Begelman–Cioffi relations, which we present here. We find that the dynamics of stable jets match well with simplified analytic models of expansion of non-self-similar FRII jets, whereas jets with prominent MHD instabilities show a nearly self-similar evolution of the morphology as the energy is more evenly distributed between the jet head and the cocoon.

Funder

Istituto Nazionale di Astrofisica

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3