Numerical modelling of the lobes of radio galaxies – Paper V: universal pressure profile cluster atmospheres

Author:

Stimpson M1,Hardcastle M J1ORCID,Krause M G H1ORCID

Affiliation:

1. Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire , College Lane, Hatfield, Hertfordshire AL10 9AB , UK

Abstract

ABSTRACT We present relativistic magnetohydrodynamic modelling of jets running into hydrostatic, spherically symmetric cluster atmospheres. For the first time in a numerical simulation, we present model cluster atmospheres based upon the universal pressure profile (UPP), incorporating a temperature profile for a ‘typical’ self-similar atmosphere described by only one parameter – M500. We explore a comprehensive range of realistic atmospheres and jet powers and derive dynamic, energetic, and polarimetric data which provide insight into what we should expect of future high-resolution studies of AGN outflows. From the simulated synchrotron emission maps which include Doppler beaming we find sidedness distributions that agree well with observations. We replicated a number of findings from our previous work, such as higher power jets inflating larger aspect-ratio lobes, and the cluster environment impacting the distribution of energy between the lobe and shocked regions. Comparing UPP and β-profiles we find that the cluster model chosen results in a different morphology for the resultant lobes with the UPP more able to clear lobe material from the core; and that these different atmospheres influence the ratio between the various forms of energy in the fully developed lobes. This work also highlights the key role played by Kelvin–Helmholtz instabilities in the formation of realistic lobe aspect ratios. Our simulations point to the need for additional lobe-widening mechanisms at high jet powers, for example jet precession. Given that the UPP is our most representative general cluster atmosphere, these numerical simulations represent the most realistic models yet for spherically symmetric atmospheres.

Funder

STFC

University of Hertfordshire

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3