Revisiting profile instability of PSR J1022+1001

Author:

Padmanabh Prajwal V1ORCID,Barr Ewan D1,Champion David J1ORCID,Karuppusamy Ramesh1,Kramer Michael12,Jessner Axel1,Lazarus Patrick1

Affiliation:

1. Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn, Germany

2. Jodrell Bank Center for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK

Abstract

ABSTRACT Millisecond pulsars in timing arrays can act as probes for gravitational wave detection and improving the Solar system ephemerides among several other applications. However, the stability of the integrated pulse profiles can limit the precision of the ephemeris parameters and in turn the applications derived from it. It is thus crucial for the pulsars in the array to have stable integrated pulse profiles. Here we present evidence for long-term profile instability in PSR J1022+1001 which is currently included in the European and Parkes pulsar timing arrays. We apply a new evaluation method to an expanded data set ranging from the Effelsberg Pulsar Observing System backend used in the 1990s to that of data from the current PSRIX backend at the Effelsberg Radio Telescope. We show that this intrinsic variability in the pulse shape persists over time-scales of years. We investigate if systematic instrumental effects like polarization calibration or signal propagation effects in the interstellar medium causes the observed profile instability. We find that the total variation cannot be fully accounted for by instrumental and propagation effects. This suggests additional intrinsic effects as the origin for the variation. We finally discuss several factors that could lead to the observed behaviour and comment on the consequent implications.

Funder

European Research Council

Commonwealth Scientific and Industrial Research Organisation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3