An edge-on orbit for the eccentric long-period planet HR 5183 b

Author:

Venner Alexander1ORCID,Pearce Logan A2ORCID,Vanderburg Andrew3ORCID

Affiliation:

1. Aberdeen , UK

2. Steward Observatory, University of Arizona , Tucson, AZ 85721, USA

3. Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , Cambridge, MA 02139, USA

Abstract

ABSTRACT The long-period giant planet HR 5183 b has one of the most extreme orbits among exoplanets known to date, and represents a test for models of their dynamical evolution. In this work, we use Hipparcos–Gaia astrometry to measure the orbital inclination of this planet for the first time and find $i=89.9^{+13.3\circ }_{-13.5}$, fully consistent with edge-on. The long orbital period and high eccentricity of HR 5183 b are supported by our results, with $P=102^{+84}_{-34}$ yr and e = 0.87 ± 0.04. We confirm that HR 5183 forms a physically bound binary with HIP 67291 at a projected separation of 15 400 AU, and derive new constraints on the orbit of this pair. We combine these results to measure the mutual inclination between the planetary and binary orbits; we observe significant evidence for misalignment, which remains even after accounting for bias of the prior towards high mutual inclinations. However, our results are too imprecise to evaluate a recent prediction that the mutual inclination should reflect the formation history of HR 5183 b. Further observations, especially the release of the full Gaia astrometric data, will allow for improved constraints on the planet-binary mutual inclination. $52 \pm 16\ \hbox{per cent}$ of known planets with eccentricities e ≥ 0.8 are found in multiple star systems, a rate that we find to be greater than for the overall planet population to moderate significance (p = 0.0075). This supports the hypothesis that dynamical interactions with wide stellar companions plays an important role in the formation of highly eccentric exoplanets.

Funder

CDS

National Aeronautics and Space Administration

California Institute of Technology

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3