Photometric redshifts estimation for galaxies by using FOABP-RF

Author:

Li Mengci1ORCID,Gao Zhenbin1,Qiu Bo1,Zhang Jiannan2,Mu Yonghuan1,Xiang Guanjie1,Zhang Yuxin1

Affiliation:

1. School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China

2. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

Abstract

ABSTRACT This paper proposes a new combinatorial algorithm (FOABP-RF)-using Fruit Fly Optimization Algorithm to enhance Back Propagation Neural Network (FOABP) and random forest (RF) to estimate photometric redshifts of galaxies. This method can improve the estimation accuracy and effectively overcome the shortcomings of artificial neural network which often falls into the local optimal point. And it is suitable for different types of galaxies. First, self-organizing feature mapping (SOM) is used to cluster samples into early-type and late-type galaxies. Then the Back Propagation neural network (BP), genetic algorithm and back propagation (GABP) neural network, particle swarm optimization algorithm combined with BP neural network (PSOBP), FOABP-RF and other latest algorithms are used to estimate the redshifts of the two types of galaxies from one to another. Finally, in the experiment, 80218 galaxies with the redshift Z < 0.8 from the Sloan Digital Sky Survey Data Release 13 (SDSS DR13) are used as the data set. The root mean squared error (RMSE) of early-type galaxies by FOABP-RF is 6.03, 2.41, and 1.94 per cent lower than BP, GABP, and PSOBP, respectively. And the RMSE of late-type galaxies by FOABP-RF is 6.09, 4.09, 73.37 per cent lower than BP, GABP, and PSOBP, respectively. This proves FOABP-RF is very suitable for estimating photometric redshifts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3