Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing

Author:

Buchs R1234ORCID,Davis C125ORCID,Gruen D126ORCID,DeRose J26,Alarcon A78,Bernstein G M9,Sánchez C9,Myles J6,Roodman A12,Allen S6,Amon A2,Choi A10,Masters D C1112,Miquel R1314,Troxel M A15,Wechsler R H126,Abbott T M C16,Annis J17,Avila S18,Bechtol K1920,Bridle S L21,Brooks D22,Buckley-Geer E17,Burke D L12,Carnero Rosell A2324,Carrasco Kind M2526,Carretero J14,Castander F J78,Cawthon R20,D’Andrea C B9,da Costa L N2427,De Vicente J23,Desai S28,Diehl H T17,Doel P22,Drlica-Wagner A1729,Eifler T F1230,Evrard A E3132,Flaugher B17,Fosalba P78,Frieman J1729,García-Bellido J33,Gaztanaga E78,Gruendl R A2526,Gschwend J2427,Gutierrez G17,Hartley W G2234,Hollowood D L35,Honscheid K1036,James D J37,Kuehn K38,Kuropatkin N17,Lima M2439,Lin H17,Maia M A G2427,March M9,Marshall J L40,Melchior P41,Menanteau F2526,Ogando R L C2427,Plazas A A41,Rykoff E S12,Sanchez E23,Scarpine V17,Serrano S78,Sevilla-Noarbe I23,Smith M42,Soares-Santos M43,Sobreira F2444,Suchyta E45,Swanson M E C26,Tarle G32,Thomas D18,Vikram V46,

Affiliation:

1. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

2. Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA

3. École Polytechnique Fédérale de Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland

4. Institute of Science, Technology, and Policy, ETH Zurich, Universitätstrasse 41, CH-8092 Zurich, Switzerland

5. Descartes Labs, Inc., 100 N Guadelupe St, Santa Fe, NM 87501, USA

6. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

7. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

8. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

9. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

10. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

11. Infrared Processing and Analysis Center, Pasadena, CA 91125, USA

12. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

13. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

14. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain

15. Department of Physics, Duke University Durham, NC 27708, USA

16. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile

17. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

18. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

19. LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA

20. Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue Madison, WI 53706, USA

21. Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK

22. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

23. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain

24. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil

25. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W, Green Street, Urbana, IL 61801, USA

26. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA

27. Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil

28. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

29. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

30. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

31. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

32. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

33. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-8049 Madrid, Spain

34. Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland

35. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

36. Department of Physics, The Ohio State University, Columbus, OH 43210, USA

37. Center for Astrophysics, Harvard and Smithsonian, 60 Garden Street, MS 42, Cambridge, MA 02138, USA

38. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

39. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil

40. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

41. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

42. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

43. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA

44. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil

45. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

46. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

Abstract

ABSTRACT Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on coarse measurements of spectral energy distributions in a few filters to estimate the redshift distribution of source galaxies. In this regime, sample variance, shot noise, and selection effects limit the attainable accuracy of redshift calibration and thus of cosmological constraints. We present a new method to combine wide-field, few-filter measurements with catalogues from deep fields with additional filters and sufficiently low photometric noise to break degeneracies in photometric redshifts. The multiband deep field is used as an intermediary between wide-field observations and accurate redshifts, greatly reducing sample variance, shot noise, and selection effects. Our implementation of the method uses self-organizing maps to group galaxies into phenotypes based on their observed fluxes, and is tested using a mock DES catalogue created from N-body simulations. It yields a typical uncertainty on the mean redshift in each of five tomographic bins for an idealized simulation of the DES Year 3 weak-lensing tomographic analysis of σΔz = 0.007, which is a 60 per cent improvement compared to the Year 1 analysis. Although the implementation of the method is tailored to DES, its formalism can be applied to other large photometric surveys with a similar observing strategy.

Funder

Department of Energy

National Aeronautics and Space Administration

Smithsonian Astrophysical Observatory

National Science Foundation

Science and Technology Facilities Council

Higher Education Funding Council for England

University of Illinois at Urbana-Champaign

University of Chicago

Ohio State University

Financiadora de Estudos e Projetos

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Ministério da Ciência, Tecnologia e Inovação

Deutsche Forschungsgemeinschaft

Argonne National Laboratory

University of California at Santa Cruz

University of Cambridge

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid

University College London

University of Edinburgh

Eidgenössische Technische Hochschule Zürich

Lawrence Berkeley National Laboratory

University of Michigan

University of Nottingham

University of Pennsylvania

University of Portsmouth

SLAC National Accelerator Laboratory

Stanford University

University of Sussex

Texas A&M University

Ministerio de Economía y Competitividad

Generalitat de Catalunya

European Research Council

Brazilian Instituto Nacional de Ciência e Tecnologia

Office of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3