Using Machine Learning to link black hole accretion flows with spatially resolved polarimetric observables

Author:

Qiu Richard123ORCID,Ricarte Angelo14,Narayan Ramesh14,Wong George N56,Chael Andrew7ORCID,Palumbo Daniel14

Affiliation:

1. Center for Astrophysics | Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USA

2. Department of Physics, Harvard University , 17 Oxford Street Cambridge, MA 02138, USA

3. John A. Paulson School of Engineering and Applied Sciences, Harvard University , 150 Western Ave, Allston, MA 02134, USA

4. Black Hole Initiative at Harvard University , 20 Garden Street, Cambridge, MA 02138, USA

5. School of Natural Sciences, Institute for Advanced Study , 1 Einstein Drive, Princeton, NJ 08540, USA

6. Princeton Gravity Initiative, Princeton University , Princeton, New Jersey 08544, USA

7. Princeton Center for Theoretical Science, Princeton University , Jadwin Hall, Princeton, NJ 08544, USA

Abstract

ABSTRACTWe introduce a new library of 535 194 model images of the supermassive black holes and Event Horizon Telescope (EHT) targets Sgr A* and M87*, computed by performing general relativistic radiative transfer calculations on general relativistic magnetohydrodynamics simulations. Then to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to-electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin, inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library, for the real M87* data, our machinery favours high-spin retrograde models with large ion-to-electron temperature ratios. Due to the time-variable nature of these targets, repeated polarimetric imaging will further improve model inference as the EHT and next-generation (EHT) continue to develop and monitor their targets.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

John Templeton Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating images of the M87* black hole using GANs;Monthly Notices of the Royal Astronomical Society;2023-12-11

2. First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization;The Astrophysical Journal Letters;2023-11-01

3. Black Hole Polarimetry I. A Signature of Electromagnetic Energy Extraction;The Astrophysical Journal;2023-11-01

4. Characterization of black hole accretion through image moment invariants;Monthly Notices of the Royal Astronomical Society;2023-10-21

5. Key Science Goals for the Next-Generation Event Horizon Telescope;Galaxies;2023-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3