Exoplanet spectroscopy with JWST NIRISS: diagnostics and case studies

Author:

Holmberg Måns1ORCID,Madhusudhan Nikku1ORCID

Affiliation:

1. Institute of Astronomy, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT The JWST is ushering in a new era in remote sensing of exoplanetary atmospheres. Atmospheric retrievals of exoplanets can be highly sensitive to high-precision JWST data. It is, therefore, imperative to characterize the instruments and noise sources using early observations to enable robust characterization of exoplanetary atmospheres using JWST-quality spectra. This work is a step in that direction, focusing on the Near Infrared Imager and Slitless Spectrograph (NIRISS) Single Object Slitless Spectroscopy (SOSS) instrument mode, with a wavelength coverage of 0.6–2.8 $\mu$m and R ∼ 700. Using a custom-built pipeline, JExoRES, we investigate key diagnostics of NIRISS SOSS with observations of two giant exoplanets, WASP-39 b and WASP-96 b, as case studies. We conduct a detailed evaluation of the different aspects of the data reduction and analysis, including sources of contamination, 1/f noise, and system properties such as limb darkening. The slitless nature of NIRISS SOSS makes it susceptible to contamination due to background sources. We present a method to model and correct for dispersed field stars that can significantly improve the accuracy of the observed spectra. In doing so, we also report an empirically determined throughput function for the instrument. We find significant correlated noise in the derived spectra, which may be attributed to 1/f noise, and discuss its implications for spectral binning. We quantify the covariance matrix that would enable the consideration of correlated noise in atmospheric retrievals. Finally, we conduct a comparative assessment of NIRISS SOSS spectra of WASP-39 b reported using different pipelines and highlight important lessons for exoplanet spectroscopy with JWST NIRISS.

Funder

Science and Technology Facilities Council

University of Cambridge

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3