Effects of observational data shortage on accuracy of global solar activity forecast

Author:

Kitiashvili Irina N1ORCID

Affiliation:

1. NASA Ames Research Center, Moffett Field Blv, MS 258-5, Mountain View, CA 94035, USA

Abstract

ABSTRACT Building a reliable forecast of solar activity is a long-standing problem that requires an accurate description of past and current global dynamics. Relatively recently, synoptic observations of magnetic fields and subsurface flows have become available. In this paper, we present an investigation of the effects of short observational data series on the accuracy of solar cycle prediction. This analysis is performed using the annual sunspot number time-series applied to the Parker–Kleeorin–Ruzmaikin dynamo model and employing the Ensemble Kalman Filter (EnKF) data assimilation method. The testing of cycle prediction accuracy is performed for the last six cycles (for Solar Cycles 19–24) by sequentially shortening the observational data series to predict a target cycle and evaluate the resulting prediction accuracy according to specified criteria. According to the analysis, reliable activity predictions can be made using relatively short time-series of the sunspot number. The accuracy of the solar activity has a weak dependence on the length of available observations. It is demonstrated that at least three cycles of observations are needed to obtain robust forecasts.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3