‘Ears’ formation in supernova remnants: overhearing an interaction history with bipolar circumstellar structures

Author:

Chiotellis A1,Boumis P1,Spetsieri Z T1

Affiliation:

1. Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli, Greece

Abstract

ABSTRACT A characteristic feature that is frequently found in nearby supernova remnants (SNRs) is the existence of two antisymmetric, local protrusions that are projected as two ‘ears’ in the morphology of the nebula. In this paper, we present a novel scenario for the ‘ear’ formation process, according to which the two lobes are formed through the interaction of the SNR with a bipolar circumstellar medium (CSM) that was surrounding the explosion’s centre. We conduct two-dimensional hydrodynamic simulations and we show that the SNR shock breakout from the bipolar CSM triggers the inflation of two opposite protrusions at the equator of the remnant, which retain their size and shape from several hundreds up to a few thousand years of the SNR evolution. We run a set of models by varying the supernova (SN) and CSM properties and we demonstrate that the extracted results reveal good agreement with the observables, regarding the sizes, lifespan, morphology and kinematics of the ‘ears’. We discuss the plausibility of our model in nature and we suggest that the most likely progenitors of the ‘ear-carrying’ SNRs are the luminous blue variables or the red/yellow supergiants for the SNRs resulting from core collapse SN events, and the symbiotic binaries or the planetary nebulae for the SNRs formed by Type Ia SNe. Finally, we compare our model with other ‘ear’ formation models found in the literature and we show that there are distinctive differences among them, concerning the orientation of the ‘ears’ and the phase in which the ‘ear’ formation process occurs.

Funder

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3