Affiliation:
1. Department of Physics, Technion, Haifa, 3200003, Israel
2. Guangdong Technion Israel Institute of Technology, Shantou 515069, Guangdong Province, China
Abstract
Abstract
We argue that some scenarios for the enigmatic supernova (SN) iPTF14hls and its progenitor require a strong binary interaction. We examine scenarios that attribute the extra power of iPTF14hls to a magnetar, to a late fallback on to the neutron star (NS) that launches jets, to an interaction of the ejecta with a circumstellar matter (CSM), or to a common envelope jets SN (CEJSN). For each of these four scenarios, we study the crucial process that supplies the extra energy and conclude that a binary companion to the progenitor must be present. For the magnetar scenario and late jets we claim that a companion should spin-up the pre-collapse core, in the ejecta-CSM scenario we find that the formation of the equatorial CSM requires a companion, and in the CEJSN where a NS spirals-in inside the giant envelope of the progenitor and launches jets the strong binary interaction is built-in. We argue that these types of strong binary interactions make the scenarios rare and explain the enigmatic nature of iPTF14hls. We further study processes that might accompany the binary interaction, in particular, the launching of jets before, during and after the explosion and their observational consequences. We do not consider the difficulties of the different scenarios and neither do we determine the best scenario for iPTF14hls. We rather focus on the binary nature of these scenarios that might as well explain other rare types of SNe.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献