Magnetar-driven Shock Breakout Revisited and Implications for Double-peaked Type I Superluminous Supernovae

Author:

Liu Liang-DuanORCID,Gao HeORCID,Wang Xiao-FengORCID,Yang ShengORCID

Abstract

Abstract The discovery of early bumps in some type-I superluminous supernovae (SLSNe-I) before the main peaks offers an important clue to their energy source mechanisms. In this paper, we updated an analytic magnetar-powered model for fitting the multiband light curves of double-peaked SLSNe-I. The early bump is powered by magnetar-driven shock-breakout thermal emission, and the main peak is powered by a radiative diffusion through the supernova (SN) ejecta as in the standard magnetar-powered model. Generally, the diffusive luminosity is greater than the shock-breakout luminosity at the early time, which usually makes the shock-breakout bumps unclear to observe. To obtain a clear double-peaked light curve, inefficient magnetar heating at early times is required. This model is applied to three well-observed double-peaked SLSNe-I (i.e., SN2006oz, LSQ14bdq, and DES14Xtaz). We find that a relatively massive SN ejecta with M ej ≃ 10.2–18.1M and relatively large kinetic energy of SN ejecta erg are required, and the thermalization efficiency of the magnetar heating is suppressed before t delay, which is in the range of ≃15–43 days. The model can reproduce the observed light curves well, with a reasonable and similar set of physical parameters for both the early bump and the main peak, strengthening support for the magnetar-powered model. In the future, modeling of the double-peaked SLSNe-I will become more feasible as more events are discovered before the early bump.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3