Examining the radius valley: a machine-learning approach

Author:

MacDonald Mariah G12

Affiliation:

1. Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, State College, PA 16802, USA

2. Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, State College, PA 16802, USA

Abstract

ABSTRACT The ‘radius valley’ is a relative dearth of planets between two potential populations of exoplanets, super-Earths and mini-Neptunes. This feature appears in examining the distribution of planetary radii, but has only ever been characterized on small samples. The valley could be a result of photoevaporation, which has been predicted in numerous theoretical models, or a result of other processes. Here, we investigate the relationship between planetary radius and orbital period through two-dimensional kernel density estimator and various clustering methods, using all known super-Earths (R < 4.0RE). With our larger sample, we confirm the radius valley and characterize it as a power law. Using a variety of methods, we find a range of slopes that are consistent with each other and distinctly negative. We average over these results and find the slope to be $m=-0.319^{+0.088}_{-0.116}$. We repeat our analysis on samples from previous studies. For all methods we use, the resulting line has a negative slope, which is consistent with models of photoevaporation and core-powered mass-loss but inconsistent with planets forming in a gas-poor disc

Funder

National Science Foundation

National Aeronautics and Space Administration

California Institute of Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3