Constructing a multivariate distribution function with a vine copula: towards multivariate luminosity and mass functions

Author:

Takeuchi Tsutomu T12ORCID,Kono Kai T1

Affiliation:

1. Division of Particle and Astrophysical Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

2. The Research Center for Statistical Machine Learning, the Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan

Abstract

ABSTRACTThe need for a method to construct multidimensional distribution function is increasing recently, in the era of huge multiwavelength surveys. We have proposed a systematic method to build a bivariate luminosity or mass function of galaxies by using a copula. It allows us to construct a distribution function when only its marginal distributions are known, and we have to estimate the dependence structure from data. A typical example is the situation that we have univariate luminosity functions at some wavelengths for a survey, but the joint distribution is unknown. Main limitation of the copula method is that it is not easy to extend a joint function to higher dimensions (d > 2), except some special cases like multidimensional Gaussian. Even if we find such a multivariate analytic function in some fortunate case, it would often be inflexible and impractical. In this work, we show a systematic method to extend the copula method to unlimitedly higher dimensions by a vine copula. This is based on the pair-copula decomposition of a general multivariate distribution. We show how the vine copula construction is flexible and extendable. We also present an example of the construction of a stellar mass–atomic gas–molecular gas three-dimensional mass function. We demonstrate the maximum likelihood estimation of the best functional form for this function, as well as a proper model selection via vine copula.

Funder

Japan Society for the Promotion of Science

Sumitomo Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3