Thermal instability of halo gas heated by streaming cosmic rays

Author:

Kempski Philipp1,Quataert Eliot1ORCID

Affiliation:

1. Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720, USA

Abstract

ABSTRACT Heating of virialized gas by streaming cosmic rays (CRs) may be energetically important in galaxy haloes, groups, and clusters. We present a linear thermal stability analysis of plasmas heated by streaming CRs. We separately treat equilibria with and without background gradients, and with and without gravity. We include both CR streaming and diffusion along the magnetic-field direction. Thermal stability depends strongly on the ratio of CR pressure to gas pressure, which determines whether modes are isobaric or isochoric. Modes with $\boldsymbol {k \cdot B }\ne 0$ are strongly affected by CR diffusion. When the streaming time is shorter than the CR diffusion time, thermally unstable modes (with $\boldsymbol {k \cdot B }\ne 0$) are waves propagating at a speed ∝ the Alfvén speed. Halo gas in photoionization equilibrium is thermally stable independent of CR pressure, while gas in collisional ionization equilibrium is unstable for physically realistic parameters. In gravitationally stratified plasmas, the oscillation frequency of thermally overstable modes can be higher in the presence of CR streaming than the buoyancy/free-fall frequency. This may modify the critical tcool/tff at which multiphase gas is present. The criterion for convective instability of a stratified, CR-heated medium can be written in the familiar Schwarzschild form dseff/dz < 0, where seff is an effective entropy involving the gas and CR pressures. We discuss the implications of our results for the thermal evolution and multiphase structure of galaxy haloes, groups, and clusters.

Funder

Simons Foundation

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiphase Gas in Elliptical Galaxies: The Role of Type Ia Supernovae;The Astrophysical Journal;2024-04-01

2. Cosmic-Ray Acceleration of Galactic Outflows in Multiphase Gas;The Astrophysical Journal;2024-03-01

3. Cosmic ray feedback in galaxies and galaxy clusters;The Astronomy and Astrophysics Review;2023-12

4. The impact of cosmic rays on thermal and hydrostatic stability in galactic haloes;Monthly Notices of the Royal Astronomical Society;2023-09-12

5. Cosmic-Ray Drag and Damping of Compressive Turbulence;The Astrophysical Journal;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3